Fashionable Destruction, Responsible?

Jeans, a voyage from the cotton plant to the wardrobe and beyond
History

• Work wear made out of blue cotton fabric (denim): waist overalls or (blue) jeans
 – Serge de Nîmes 17de C
 – Gènes (Genua) \rightarrow Jeans

• Jacob Davis: jeans
 – Copper rivets
 – Levi Strauss: patent (1873)
History

• Europe: World war II, actors
 – First jeans in Europe in 1959

• Many brands and trends
 – ‘70: wide legs
 – ‘80: tight legs
 – ‘90 -‘00: revival of the styles from the forties and fifties
 • Different washings and decorations
 – 2010: eco jeans
Figures

• 2007
 – Belgium: 10,5 mio jeans
 – Europe: 389 mio jeans

• Price
 – From € 6 up to + € 1000 (average € 36 in Europe)
Denim Value chain – people (S)/planet (E)/profit (P)

- Agriculture: S: -/-, E: -/-, P: -/-
- Design: S: ++, E direct: +
- Textile mill: S: -/-, E indirect: ?
- Garment manufacturing: S: -/-, E: +/-, P: +/-
- Garment finishing: S: -/-, E: +, P: +/-
- Retail: S: +, E: +, P: +/-
Material: Cotton

Cotton covers 2.5% of the cultivated land but uses 16% of the world’s pesticides/insecticides.

Cotton picking in 1890
Fabric: yarn

- Past: 100 % ring spun cotton yarn
- Today: ring spun yarn replaced by open end yarn

Neps in rotor yarn tend to be spun into the solid yarn body → less structured fabric
Fabric: weave

• Yarn is processed into a twill fabric (2/1 or 3/1)
Colour

• Warp is dyed with (natural) indigo

(\url{http://www.youtube.com/watch?v=hXeectd1GSM})
Extraction of natural indigo
Indigo dyeing process

• Rope dyeing or beam dyeing
 – continuous process
 – Yarn is ring-dyed

• Indigo is not soluble in water
 – Solubilize by adding sodium hydrosulfite, thiourea dioxide or a commercial reducing agent in alkaline conditions, pH 9-11 (NaOH) (reduction): yellow-greenish solution (vat)
Indigo dyeing process

• Concentration of the vat: 1.5 to 5 %
• Yarn is dipped 5 to 8 times, exposure to air (oxidation) between each dip (more dips → darker colour)
• 2-3 rincing baths and neutralizing
• Dry and wet fastness to rubbing must be OK
• Light colours tend to be more perceptive to gasfading
Fabric treatment

- Mechanical: stabilizing yarn twist (Twin twister) and shrinkage (sanforisation)
Look and Hand

• Structured, worn look
• Soft touch
• Pleasant hand
Most common problems

- Loss of strength
- Corrosion of metal parts (zippers, rivets)
- Unpleasant hand
- High shrinkage
- Uneven washing effect
- Striped marks, stains, creases
- Staining of white parts (backstaining)
- Little contrast between warp and weft
- Colour change due to binding of free radicals (ozon or nitrogen oxide)
- Reproducibility
Special effects

- Yarn
- Weaving
- Dyeing process
- Coating
- Washing
- Brushing, 3D-effects, spraying, laser, sandblasting, …
Departement technologie

Dirty Dye Enzyme Sandblasted
Sunbleached Stonewashed Fabric Dyed
Yarn

• Use multitwist or multicount yarn in the warp
 – Multitwist: speeding up of the spinning machine over a certain distance → thicker and thinner areas in the yarn
 – Multicount: giving more or less feed to the spinning machine

• Crossedge effect by using multitwist or multicount in warp and weft
Yarn

- No longer 100% cotton, but blends with hemp, flax, polyester, polyamide, lycra
- 100% bamboo (viscose)
- Bio cotton
 - in 2009 production raise by 20%
 - 0.76% of the entire cotton production is ‘organic’
Weave

- Variations in type of twill
 - Z or S direction, opposite to or concurrent with the twist direction
 - Different angle

- Different weave
Dyeing

• Color denim
 – Sulphur dyes (mostly black, but also grey, green, brown, red, …)
• Sulphur bottom in black or grey before indigo dyeing process
 – Colour remains dark after washing
• Sulphur top with black, red (purple shine), yellow (green shine)
Dyeing

• “sandwich dye”: sulphur bottom – indigo – sulphur top
• Combinations NEVER wet on wet
• Use coloured weft
 – reactive dyed weft must not be bleached with NaOCl (javel)
Coating

- Mostly PU coating
- Protects the colour
- Pleasant hand
- Shiny effect
Denim Washing

- Desizing
- Enzyme or stone wash
- Bleaching
- Dyeing
- Post washing/neutralizing
- Softening, …
Desizing

- Avoid uneven bleaching effect
- Avoid stripiness

- **Chemical degradation** of starch and its derivatives into water soluble products. This degradation can be obtained by:
 - hydrolysis (enzymes)
 - oxidation

- By washing out after swelling of water soluble sizes
Desizing

- Enzymatic desizing
 - Amylases
 - +/- 60 °C
 - 10 – 20 min
 - pH 6 - 7
Enzymatic disizing

Advantages
- No fibre damage
- No use of aggressive chemicals
- Discontinuous, semi-continuous and continuous processes
- Highly bio degradable

Disadvantages
- Combination with other traditional pretreatments not possible. Enzymes are only active under precise conditions.
- Less simultaneous extraction of other impurities
- Possible loss of activity due to enzyme poisoning
Oxidative desizing

Advantages
- cheap
- several processes can be combined
- simultaneous extraction of other impurities

Disadvantages
- aggressive chemicals
- non-selective degradation with risk of fibre damaging
- polluting
Enzyme and/or stone wash

• Gives the trousers a worn look
• Improves the hand
 – More soft and supple
• With or without stones
 – Pumice or perlite
 – Cellulases (granules or liquid)
Advantages and disadvantages

<table>
<thead>
<tr>
<th>With stones</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>Shortened washing time</td>
<td>Formation of sludge</td>
</tr>
<tr>
<td>Soft hand</td>
<td>Stones in the pants</td>
</tr>
<tr>
<td>Less cellulases needed</td>
<td>More dull effect</td>
</tr>
<tr>
<td>More rinse baths</td>
<td>Damage to the machines</td>
</tr>
</tbody>
</table>

![After desizing](#)
![After stoning and biopolishing](#)
Advantages and disadvantages

<table>
<thead>
<tr>
<th>Without stones</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>No sludge</td>
<td>Longer treatment times</td>
</tr>
<tr>
<td>No stones in trousers</td>
<td>Rougher surface</td>
</tr>
<tr>
<td>Less rinse baths</td>
<td>Large amounts of enzymes</td>
</tr>
<tr>
<td>Bluer</td>
<td></td>
</tr>
<tr>
<td>Less damage to equipment</td>
<td></td>
</tr>
</tbody>
</table>
Stone wash

- 1 kg stones for 1 kg fabric (1 trouser = +/- 750 g) + soap
- Effect of stones more visible on the seams
- 15 – 90 min
- Polluting (several rinses to removes grit)
- Labour intensive (manual removing of stones from pockets)
- Special washing machines (past: octagonal drums, present drums with ribs)
- rpm is important (not to fast, variable with drum diameter)
- Trousers must roll, not fall
Biopolishing

• Removes fluff
• Environmentally friendly (less water)
• Less damage to trousers and equipment
• Several types:
 – Neutral (pH 6 – 8)
 – Acid (pH 4 – 6)
 – Hybride (blend)
• Action is stopped by changing process conditions (pH, T)
Cellulases

Cellulose (crystal) → Endocellulase → Cellulose → Exocellulase → Cellobiose or Cellotetrose

Cellulase (β-glucosidase)

Glucose
Advantages and disadvantages

<table>
<thead>
<tr>
<th>Acid cellulases</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable ratio price/effect</td>
<td>More backstaining</td>
</tr>
<tr>
<td>Suitable for bleached fabric</td>
<td>Less contrast in darker shades</td>
</tr>
<tr>
<td>Lower contrast</td>
<td>Higher loss of strengh</td>
</tr>
</tbody>
</table>
Advantages and disadvantages

<table>
<thead>
<tr>
<th>Neutral cellulases</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor staining of white parts</td>
<td>Expensive</td>
</tr>
<tr>
<td>Recommended for dark colours</td>
<td></td>
</tr>
<tr>
<td>Minor loss of strength</td>
<td></td>
</tr>
</tbody>
</table>
Sludge & waste water from a stone washing plant (Tunisia)
Bleaching

• Provides a washed and bleached look
• Fashionable shades of blue
• Mostly chlorine bleach, also peroxide, permanganate, glucose and ozon
• No chlorine bleach for stretch-jeans, unless T400 (elastomers are sensitive to chlorine and alkali) or reactive dyeings
Chlorine bleach (oxidative)

- NaOCl (sodium hypochlorite or bleach) – 150 g/l active chlorine
- Cheap, highly active (beware of fibre damage), polluting, necessary to neutralize
 - 40 – 50 °C
 - Bleaching effect:
 - Light bleach: 5 – 10 ml/l
 - Medium bleach: 10 – 20 ml/l
 - Super bleach: 20 – 30 ml/l
 - pH 9 – 10 (the lower, the more aggressive and greener the effect)
 - 10 – 30 min
 - Neutralize with 2 – 4 g/l bisulphite of thiosulfate
Permanganate bleach (oxidative)

- KMnO₄ (potassium permanganate)
- Colour of bleach bath changes from purple to brown
 - Difficult to reproduce the effect
 - T: 20 – 30 °C
 - Bleach effect:
 - Light bleach: 1 – 5 g/l
 - Medium bleach: 5 – 10 g/l
 - Super bleach: 10 – 30 g/l
 - Snow wash effect (soak pumice stones in KMnO₄)
 - Neutralize with bisulfite
Washing/bleaching equipment
Other

- H_2O_2 (hydrogen peroxide, oxidative)
 - Ecologic, less aggressive, used on sulphur top
- O_3 (ozon)
- Glucose (reductive)
 - 10 – 15 g/l glucose
 - 80 – 85 °C
 - 30 – 45 min
Post washing/neutralizing

- Rinse well and neutralize to avoid fabric damage, bad odour, skin irritation and yellowing (gasfading)
- 50 – 60 °C met tensioactive product
- 10 – 20 min
- Several hot and cold rinses
Dyeing

- Overdye with a small amount of dyestuff to change the shade, mostly direct dyestuffs
- Garment dyeing with direct, reactive or sulphur dyes or pigments
Softening

- Improve the hand
 - Fatty acids
 - Silicones (not often used in indigo dyeing)
 - Risk of yellowing (gasfading) → special types of softeners
Points of interest

• Treated garments must not contain residues of alkali
• Chemicals must be applied evenly to obtain a uniform effect
• Garments must be instantly dried to avoid creases
• Do not overdry in tumbler
Points of interest

• During fixation in a tunnel dryer the image of the garment is permanently fixated (undesired pleats can no longer be removed)
• All process steps must rapidly succeed
• Accessories must be rustproof and resistant to high temperatures
• Loss of strength is inevitable
Points of interest

• Risk of yellowing by UV-radiation en noxious gasses (fotocchemical smog)
 – decomposition of indigo by O_3 or No_x
 • Degradation products are yellow
 – Damaging of natural rubber and PU-yarn
 – Higher risik during summer

• Bleaching can damage lycra \rightarrow use T400 yarn (PES multicomponent)
Protect against corrosion

• Add a sequestring agent (prevents corrosion and staining by colorants)
departement technologie

Washing machine

Dyeing machine

Tumbler

Dryer
Special effects

• Chemical
 – Spray, sponge, immerse, pour
 – 3D-effects (dependent on length (knee-height) and size)

• Mechanical
 – Local abrasion (abrasive paper or brushes, manual or mechanical) (dependent on length and size)
 – Laser
Spray/sponge

- KMnO₄
- Pigments
- Fix trousers on inflatable manikin
KMnO4 spraying (Tunisia)
Stain release finish

- Treatment in washing machine with fluorocarbon polymer
3D-effects

• Spray or dip garment with resine (PVAc), wash resistant extender (DHEU) and acid (sometimes local spray, but dipping is better to obtain a uniform effect) (formaldehyde !)

• Spin-dry

• Fix on manikin with flexible legs

• Dry at 100 °C (tunnel, caroussel or IR). As long as the fabric is not dry there is a risk for damaging or false creases while polymerising)

• Polymerise at 160 °C
Tunnel dryer

Spray tool

IR-dryer (Solarium)
‘3D-whiskers’
Dry carrousel (Bohemia)

3D-whiskers
Local abrasion

- Manual with abrasive paper
- Mechanical with rotating brushes
 - Adjust height and width according to size
 - Beware of differences between left and right leg
- Fix garment on inflatable manikin, with or without pattern in the rubber
- Lighting of 700 lux necessary
Scraping
Inflatable manikin for manual scraping or brushing

Brush robots
departement technologie

Manikin with pattern in rubber

Holder for abrasive paper (manual scraping)

Brushes
used look whiskers
Laser

- Light amplification by stimulated emission of radiation
- Colorants are being sublimated
- Can be applied before dyeing
Sandblasting
Sandblasting,
Tunisia April 2011
Denim sandblasters contract fatal silicosis in illegal workshops

Sandblasting jeans kills young people

Silicosis in Turkish denim sandblasters
Sustainable jeans

<table>
<thead>
<tr>
<th>Material</th>
<th>Need for energy/kg</th>
<th>Need for water/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>49-60 MJ</td>
<td>7000-29000 l</td>
</tr>
<tr>
<td>Polyester</td>
<td>109410 MJ</td>
<td>17 l</td>
</tr>
<tr>
<td>Acrylic</td>
<td>157 MJ</td>
<td>210 l</td>
</tr>
<tr>
<td>Wool</td>
<td>8 MJ</td>
<td>130-170 l</td>
</tr>
<tr>
<td>Hemp</td>
<td>5 MJ</td>
<td>1000 l</td>
</tr>
<tr>
<td>Bio cotton</td>
<td>54 MJ</td>
<td>7000-29000 l</td>
</tr>
</tbody>
</table>

1 pair of jeans weighs 750 g
→ 1 pair of jeans in 100% cotton consumes approx. 40 MJ and 5250-21750 l water
→ +/- 350 g pesticides
Individual aspects in purchasing clothing

![Bar chart showing individual aspects in purchasing clothing. The chart compares percentages for 2006 and 2002 in terms of factors such as quality, price, skin-friendly, fashionable, tested on harmful substances, functional materials, environmentally friendly production, and 100% natural fibers.]
Alternatives for cotton

• Bio cotton
• Hemp (grows easily without fertilizers or pesticides)
• Bamboo (grows easily without fertilizers or pesticides)
• Blends with ex. Polyester (difficult to recycle)
Ecological footprint of fibres (ha/ton)

- Bio Hemp 1.45
- Polyester 1.65
- Organic Cotton Punjab 3.35
- Cotton Punjab 3.50
- Cotton USA 3.00

Ecological footprint of a pair of jeans

- Production: 50 %
- Use and end of life: 50 %
Load of waste water of the dyehouse and washing plant

- BOD 200-3000 mg/l (biological oxygen demand)
- COD 500-5000 mg/l (chemical oxygen demand)
Working conditions
Challenges and bottlenecks

Be aware of greenwashing!
Challenges and bottlenecks

- Ambiguity about selection criteria
- Meaning and limitations
- Measurability
- No legal status
- Owned by profit organisations
- Difficult to market because of sprawl